

This document is prepared from the following University Notifications

- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem1.pdf
- https://www.du.ac.in/uploads/new-web/notifications-2021/28032023_nep-Faculty%20of%20Interdisciplinary%20&%20Applied%20Sciences.pdf
- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem3.pdf
- https://www.du.ac.in/uploads/new-web/18092023_Inter_4.pdf

DISCIPLINE SPECIFIC ELECTIVES (DSE) COURSES OFFERED BY THE DEPARTMENT

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Computer Networks	4	3	-	1	Class XII passed with Physics + Mathematics/Applied Mathematics + Chemistry OR Physics + Mathematics/Applied Mathematics + Computer Science/Informatics Practices	Programming Language (DSC 1, Sem I)/ Algorithm Design and Analysis(DSE 1B, Sem III), Operating System(DSE 2B, Sem IV)

Learning Objectives

The course objectives include learning about computer network organization and implementation, obtaining a theoretical understanding of data communication and computer networks, and gaining practical experience. This course introduces the student to the fundamental understanding of the architecture and principles of today's computer networks. It introduces various protocols and their functionalities. This course will help to understand The Internet and its impact on the computer network architecture.

Learning outcomes

The Learning Outcomes of this course are as follows:

- Describing computer network in terms of a layered model.
- Implementing data link, network, and transport layer protocols in a simulated networking environment
- Determine different types of errors and data flow within networks.
- Planning logical sub-address blocks with a given address block.
- Describing the standard protocols involved with the INTERNET, TCP/IP, based communications.

This document is prepared from the following University Notifications

- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem1.pdf
- https://www.du.ac.in/uploads/new-web/notifications-2021/28032023_nep-Faculty%20of%20Interdisciplinary%20&%20Applied%20Sciences.pdf
- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem3.pdf
- https://www.du.ac.in/uploads/new-web/18092023_Inter_4.pdf

SYLLABUS OF ELDSE-3A

Total Hours- Theory: 45 Hours, Practicals: 30 Hours

UNIT – I (11 Hours)

Network Basics and Physical layer: Data Communication- Components, Network topologies, OSI Reference Model, Internet (TCP/IP) Model, Digital Signals, Digital-to-Digital Encoding, Transmission Media- Guided and Unguided, Addressing, Transmission Impairment, Nyquist Bit rate, Shannon Capacity and Line Coding Schemes, Switching-Circuit Switching, Message Switching and Packet Switching, Network Connecting Devices- Repeaters, Hubs, Switches, Bridges, Routers and Gateway.

UNIT – II (12 Hours)

Data Link Layer and MAC: Character and Bit Oriented Framing, Flow and Error Control, Error Detection and Correction Codes- Parity, Hamming Code, Cyclic Redundancy Check and Checksum, Stop and Wait Protocol, Sliding Window Protocol and Piggybacking, Go-Back-N ARQ, Selective Repeat ARQ. Random Access Protocols- ALOHA, CSMA, CSMA/CD, CSMA/CA, Controlled Access Protocols- Reservation, Token Passing and Polling, Channelization Protocols-FDMA, TDMA and CDMA.

UNIT – III (12Hours)

Network Layer: IPV4 Addresses- Classful and Classless, Subnet Addressing, NAT, Datagram Format, Internet Control Protocols- ARP, RARP and ICMP, Routing algorithms - Shortest Path and Distance Vector, Approaches to Congestion Control, IPV4 issues, Need for IPV6,IPv6 Packet Format, IPV6 Unicast and Multicast Addressing

UNIT – IV (10 Hours)

Transport and Application Layer: Transport Services, Connection management, TCP and UDP protocols, Congestion Control and Quality of Service, Application Layer-DNS, FTP, WWW and HTTP.

Practical component (if any) – Computer Networks

(The practical will need to be Simulated on Cisco Packet Tracer or an equivalent platform. All Programming experiments to be done with Python)

Learning outcomes

The Learning Outcomes of this course are as follows:

- Implement a simple network with hubs and switches.
- Understand the various LAN topologies
- Describe how packets are delivered in the Internet.
- Describe what classful addressing scheme is.
- Grasp the error detection and correction algorithms

This document is prepared from the following University Notifications

- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem1.pdf
- https://www.du.ac.in/uploads/new-web/notifications-2021/28032023_nep-Faculty%20of%20Interdisciplinary%20&%20Applied%20Sciences.pdf
- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem3.pdf
- https://www.du.ac.in/uploads/new-web/18092023_Inter_4.pdf

LIST OF PRACTICALS (Total Practical Hours- 30 Hours)

1. Create a simple network with a switch and two end devices in Cisco Packet Tracer. Configure the PCs, set their IP address and capture Ping from one PC to the other and vice versa.. Mention the uses of PING command.
2. Study Network Commands: tracert, ipconfig and ipconfig/all.
3. Implement MESH/STAR/RING/BUS topology in Packet tracer.
4. Write a program to add a parity bit to a 7 bit data input by a user/ add redundant bits to a 7 bit data using Hamming Code to be implemented at the sender's site.
5. Write a program to detect and correct a single bit error while transmitting a 7-bit Hamming Code word to be implemented on the receiver side.
6. Write a program to implement CRC at the sender's site.
7. Write a program to show Byte and Bit stuffing in a frame.
8. Set a six-computer network with a switch using Packet Tracer and show Unicast and Broadcast addressing.
9. Connect two different networks using a router in Packet tracer and show movement of packets from one to the other.
10. Write a program to determine the class of the given IPV4 Address in Dotted Decimal or Binary Notation.
11. Implement FTP Server in Packet Tracer and show transfer of data.
12. Study HTTP /DNS on the Packet Tracer.

Note: Students shall sincerely work towards completing all the above listed practicals for this course. In any circumstance, the completed number of practicals shall not be less than eleven.

Essential/recommended readings

1. Behroz A. Forouzan, " Data Communication and Networking", TMH, 5th Edition.
2. A.S.Tanenbaum, " Computer Network", Pearson Education, 4th Edition.

Suggestive readings

1. James Kurose , "Computer Networking: A Top-Down Approach", Pearson Education, 7th Edition.
2. Douglas E. Comer, "Internetworking with TCP/IP Principles, Protocol and Architecture Volume 1" , 6th Edition
3. Peterson and Davis, "Computer Networks: A Systems Approach", Pearson, 5th edition
4. Fall Kevin and W. Richard Stevens , "TCP/IP Illustrated: The Protocols" Volume 1.
5. William Stallings, "Data and Computer Communication", Tenth Edition.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.